

Energy Potential from Wastewater Treatment Facilities

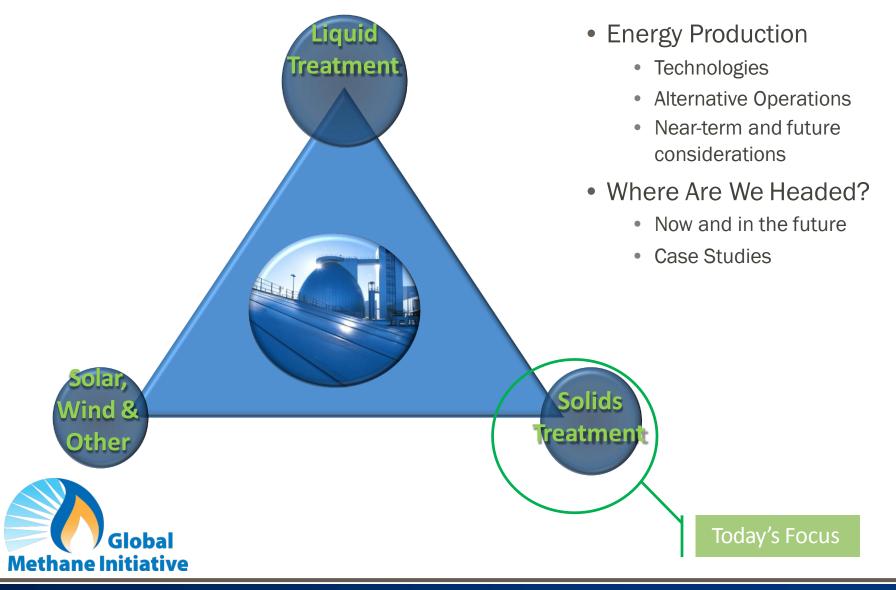
May 29, 2019

Presenters:

José Velazquez, PE, BCEE

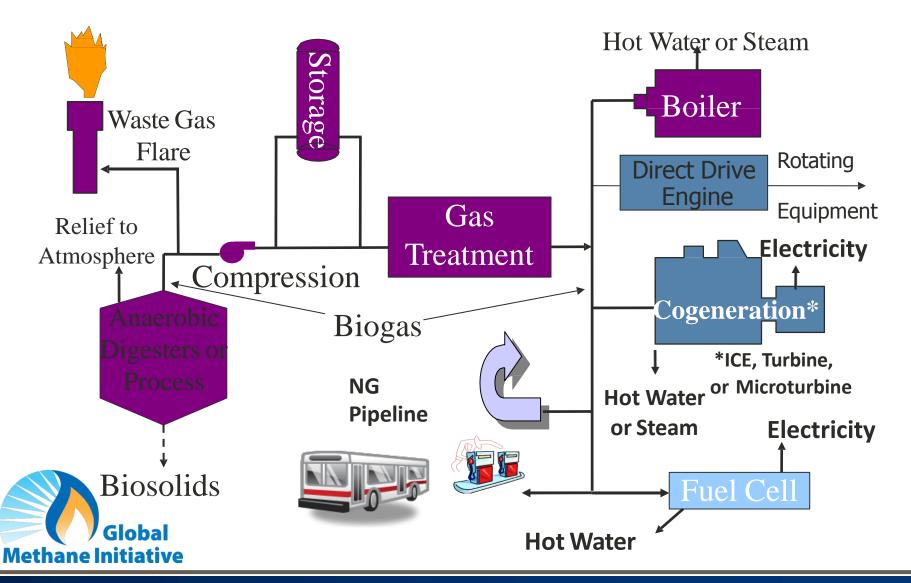
Mark Oven

Overview of 5/29/19



Slide	Торіс	Notes		
1	Cover			
2	Overview			
3	Energy in wastewater			
4	Energy from anaerobic treatment			
5	Processes used			
6	What is driving biosolids management?			
7	Biosolids described			
8	Anaerobic treatment of full flow			
9	Energy resources in sludge			
10	Pre-Feasibility Studies			
11	Preliminary Results			
12	Biogas Energy Opportunities by Capacity			
13	Examples from the U.S.			
14	Preliminary Conclusions			
Global				

Methane Initiative


Energy in Wastewater

Energy from Anaerobic Treatment

Processes Used

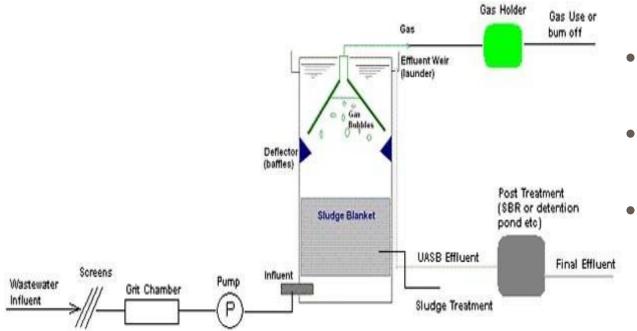
- Pre-processing of Sludge
- Anaerobic Treatment
- Digester Gas Utilization
 - Alternatives considered
 - Microturbines for electricity and heat
 - Internal combustion engines for electricity and heat
 - Fuel cells for electricity
 - Convert to natural gas for vehicles or other uses
- End Uses for Gas and Biosolids

What is Driving Biosolids Management?

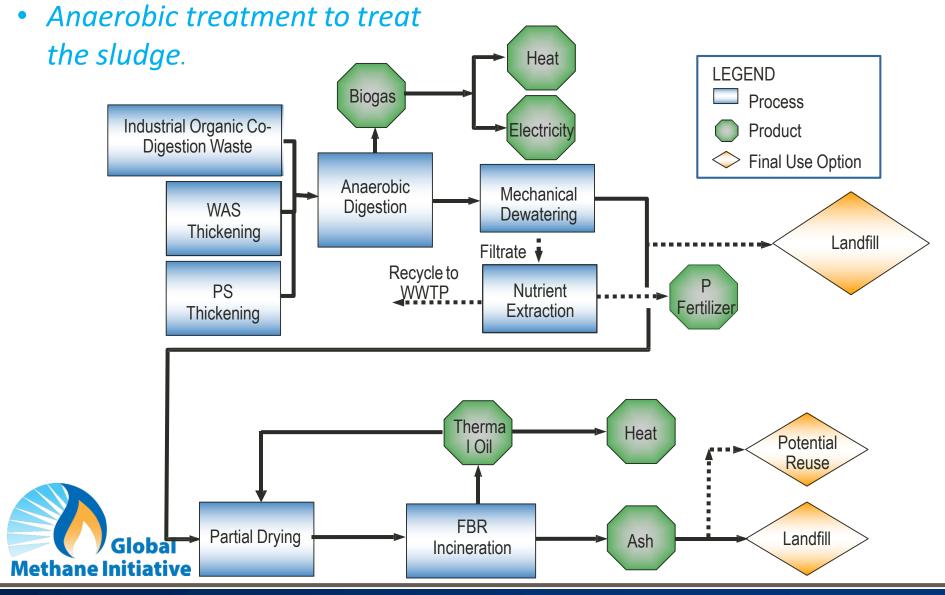
- Regulations
 - Federal, State, Regional, and Local
- Energy Opportunities
- Greenhouse Gas (GHG) Reduction
 - Cost Savings
 - Carbon Footprint
- Liability and Risk Management

TETRA TECH

ΤĿ


- Treated solid, semi-solid or liquid organic residues removed from wastewater when it is cleaned so it can be beneficially recycled or discharged
- Source of Nitrogen and Phosphorus in crop production
- Safe and effective when used properly
- Potential source of bio-energy

• Anaerobic treatment can be used to treat the liquid stream.


- Anaerobic treatment of full waste stream
- Provide post-treatment for effluent
- Further process for reuse and energy recovery

Multiple suppliers of anaerobic treatment systems are available.

Energy Resources in Sludge

Prefeasibility Studies

Facilities Visited:

- Nur-Sultan 254 MLD Capacity
- Taldykorgan 36 MLD
- Almaty 640 MLD
- Shymkent 150 MLD

Prefeasibility Studies:

- Nur-Sultan: Potential Reduction GHG Emissions
 - kg CO₂e from 88,500 to 61,000 to 81,600 depending on type of improvements
- Taldykorgan: Potential Reduction GHG Emissions
 - kg CO₂e from 13,800 to 8,700 to 8,500

depending on type of improvements

Nur-Sultan

- Energy Potential 66 kW
- Total Capital Cost \$100 to \$110 million

Taldykorgan

- Energy Potential 8.3 kW
- Total Capital Cost \$ 30 to \$ 35 million

\$ - US Dollars

Facility Description	Range (MLD)	Range (LPS)	Biogas Project Feasibility
Small	< 10	< 100	Unlikely
Medium	10 to 60	100 to 700	Worth Evaluating
Large	60+	700+	Strong Consideration

Las Gallinas Valley Sanitary District Summary

OVERVIEW:

- WWTP located in the Las Gallinas Valley between Novato and San Rafael, in Marin County, California
- Small WWTP
 - 2.9 million gallon per day (MGD) capacity (13.3 megaliters per day (MLD))
 - 15000 gallons of sludge processed/day (56,800 litre/day)
- Two anaerobic sludge digesters
- Average of 32 standard cubic feet per minute (scfm)
 [0.9 m³/min] of 63% methane content gas available
- Digester gas used for process heating and electrical generation with microturbines and vehicle fueling

- Reduce Energy Consumption and Greenhouse Gas Emissions
- Reduce operating costs for vehicle fleet
- California Financial Incentives

Grand Junction, Colorado - Persigo WWTP

OVERVIEW:

- WWTP located in western Colorado
- Small-Medium WWTP (8.2 MGD) [37.3 MLD]
- Two anaerobic sludge digesters producing 120,000 cf/day (3,400 m3/day) gas
- Pipeline to vehicle fueling station
- Digester Gas used for vehicle fueling and process heating

- National Renewable Identification Number (RIN) program made it financially viable
- Payback period less than 5 years and improved as RIN values increased.
- Renewal and rehabilitation work on the WWTP was needed, but anaerobic digesters were there and would stay
- RNG is good public relations and the facility serves
- city, county and private customers Global Methane Initiative

Metro Wastewater Reclamation District Robert W. Hite Wastewater Treatment Plant, CO, USA

OVERVIEW

- 220 MGD (832 MLD) Capacity
- Located in Denver Colorado
- 220 MGD (832 MLD) Capacity
- Biogas produced by 12, two-phase anaerobic digesters
- Combined Heat & Power with 2, 3.1 MW Turbines
- Generates: 4-5 MW electrical power (depends on gas quantity)
- Power used at the WWTP or sold to local Utility
- Cogeneration system operated by a private contractor

- Economy of scale allowed relatively short payback
- Digestion was well established from the day the facility started
- Nearby public utility generating station allowed flexibility in design and operation
- Sophisticated staff and management saw the benefits early on

Boulder, Colorado RNG Project

OVERVIEW:

- WWTP located Colorado
- Medium WWTP (25 MGD) [95 MLD]
- Two anaerobic sludge digesters producing 150 ft³/min (4.2 m³/min) gas
- Digester gas sold to local utility

- National Renewable Identification Number (RIN) program made it financially viable
- RNG is good public relations and helps confirm the City's commitment to sustainability
- City desires to minimize greenhouse gas emissions
- Existing cogeneration equipment needed to be replaced due to age and high cost to maintain.

- Opportunities for energy recovery from Biogas are available in Kazakhstan
- Adding composting or further treatment to produce "High-Quality" reusable solids does not significantly reduce GHG emissions
- Treatment to produce "High-Quality" solids products are not cost effective at this time
- Before moving forward with any biogas projects, additional engineering and economic studies are needed.

